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Abstract 

A detailed study is made of super elliptic curves, namely super Riemann surfaces of genus 
one considered as algebraic varieties, particularly their relation with their Picard groups. This 
is the simplest setting in which to study the geometric consequences of the fact that certain 
cohomology groups of super Riemann surfaces with odd spin structure are not freely generated 
modules. The divisor theory of Rosly, Schwarz, and Voronov gives a map from a supertorus to its 
Picard group Pic, but this map is a projection, not an isomorphism as it is for ordinary toil. The 
geometric realization of the addition law on Pic via intersections of the supertorus with superlines 
in projective space is described. The isomorphisms of Pic with the Jacobian and the divisor class 
group are verified. All possible isogenies, or surjective holomorphic maps between supertori, are 
determined and shown to induce homomorphisms of the Picard groups. Finally, the solutions to 
the new super Kadomtsev-Petviashvili hierarchy of Mulase-Rabin which arise from super elliptic 
curves via the Krichever construction are exhibited. 
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1. Introduction 

The theory of  elliptic curves [ 1,2] is not only a rich and fascinating subject in its own 

right, but a confluence of  several major branches of  mathematics and a source of  simple 

and explici t ly computable examples in each. These include Riemann surfaces, algebraic 

groups, Abelian varieties, divisor theory, Diophantine equations, mapping class groups, 

and automorphic functions. The simple modular  properties of  the torus are of  particular 

importance in conformal field theory, owing to the sewing axioms, by virtue of  which 
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modular invariance on the torus guarantees this invariance at higher genus, and in the 

related theory of elliptic genera. 

The study of super elliptic curves, meaning super Riemann surfaces of genus one 

considered as algebraic varieties, was initiated in [3,4] with the use of superelliptic 
functions and super theta functions to embed supertori in projective superspace as the 

sets of zeros of  explicit polynomial equations, generalizing the Weierstrass equation for 
an elliptic curve. Missing from this work was any discussion of the group law on a 
superelliptic curve. Associated to any Riemann surface is its Picard group or Jacobian, 

the group of line bundles of degree zero on the surface under tensor product. A torus 
is itself a group because it is isomorphic to its Jacobian via the classical Abel map. 

The situation for supertori is more complicated because the Abel map turns out to be a 

projection rather than an isomorphism. The proof of this fact and extensive discussion 
of its consequences for the theory of superelliptic curves are the subjects of this paper. 

We study specifically the supertorus with odd spin structure given informally (a more 

precise definition follows) as the quotient M = CI'I/G of the complex superplane with 

coordinates (z, 0) by the supertranslation group G generated by the transformations 

T : z - - - ~ z + I ,  0--*0,  

S : z ~ z + r + O S ,  O ~ O + &  ( i )  

The odd spin structure is of interest precisely because of the presence of the odd 
modular parameter 6 in addition to the usual even one ~- (with the modulus 7- and the 

theta functions, we will tolerate some exceptions to the standard convention that Greek 

letters denote odd quantities while Roman letters denote even ones). Meromorphic 
functions on the supertorus are just meromorphic functions F(z,  0) on C 1'1 which are 
G-invariant, or superelliptic. In particular, the cohomology group H°(M, (.9) consisting 
of global holomorphic functions is easily shown to be the set of functions a + o~0 with 

constant coefficients a, a such that a6  = 0. For even functions, a should be even and a 
odd. Owing to the constraint on a, this is not simply the vector superspace C 1'1 with 
basis { 1,0}; it is indeed a module over the Grassmann algebra A containing all our odd 
parameters, but this module is not freely generated. This situation occurs generically for 

super Riemann surfaces with odd spin structure [5,6] and its implications are not well 
understood in general. The primary motivation for this work was to study them in this 
simplest case, in which complete, explicit calculations are possible and illuminating. 

One is so accustomed to the fact that a sheaf cohomology group Hi(M, ~') typically 

carries the structure of a finite-dimensional vector space that one forgets that the proof 
is nontrivial [7]. Certainly the existence of this structure is so central to geometric 
applications of cohomology that one would hardly know where to begin without it: 
the Riemann-Roch theorem is only the simplest of the tools designed to compute 
the dimensions of these vector spaces. Such tools only generalize in the super case 
for generic even spin structures, the "normal case" considered in [8]. The lack of a 
super vector space structure causes difficulties in the theory and applications of super 
Riemann surfaces whenever a basis for a cohomology space of functions, differentials, 
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or deformations would be desirable. (One should note that because A is a Grassmann 
algebra over C, the cohomology groups do have vector space structures over C. However, 
because one may wish to vary the Grassmann algebra, it is the module structure over 
A that is of interest.) Certainly the super Riemann-Roch theorem holds only in the 

normal case or under additional assumptions. In the application to superstrings, bases 
for spaces of holomorphic differentials of various weights are normally used to express 
the superdeterminants appearing in the path integral measure and in the expressions for 

amplitudes used in finiteness and unitarity proofs. These analyses are considerably more 
complicated when such free bases do not exist [9]. For an infinite-dimensional example, 

the geometry associated to the super KP hierarchies [ 10,11] is described in terms of a 
super Grassmannian of vector subspaces of, say, functions on the supercircle [ 12] with 

the Krichever map sending a supercurve M equipped with a line bundle Z: and various 
coordinate choices to the vector subspace given by a direct sum of cohomology groups 

o o  

~ H°( M,f-.® (.9(nP ) ). 
n=O 

These are the global sections of £ holomorphic except for poles of arbitrary order at a 

marked point P. The arguments in [ 10] show (although it was not stated clearly there) 

that, although the summands may not be freely generated for small n, they become so 

for n sufficiently large, so that the sum is indeed a super vector space and the Krichever 
map makes sense. 

This paper concentrates on how the non-free character of the cohomology affects 
the geometry of a superelliptic curve, particularly its relation to its Jacobian. Section 

2 develops the basics of function theory. We exhibit the building blocks for the ex- 
plicit construction of functions, the super analogues of Weierstrass p functions and theta 
functions, as well as deriving the general constraints on the divisor of a superelliptic 
function. Because the canonical bundle of a superelliptic curve is trivial, this analysis 

applies to meromorphic differentials of all weights as well as to functions. In Section 
3 we explicitly compute the Picard group (group of line bundles), the Jacobian (space 
of linear functionals on holomorphic 1/2-differentials, modulo periods), and the divisor 

class group (divisors modulo divisors of functions) of a superelliptic curve, verifying 
that they are all isomorphic. This isomorphism has been proven for all super Riemann 

surfaces in the normal case [8], but not more generally thus far. The Abel map from 
the curve to its Jacobian is obtained and observed to be a projection ~r: it takes the 
quotient of the curve by the relation (z,/9) ~ (z ÷ a~, 0) for all t~. The origin of this 
extra identification is traced to the necessity of abelianizing the nonabelian group C 1'1 
in order for the quotient to admit a group structure. Section 4 shows that, modulo this 
identification and an ambiguity in the choice of identity element, the group operation 
on the Jacobian can be performed geometrically on the curve by intersecting it with 
special planes in the standard superprojective embedding. Section 5 determines all the 
isogenies of superelliptic curves. These are surjective holomorphic mappings between 
supertori. For elliptic curves one proves that they are necessarily homomorphisms in the 
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group structure. Here, since a superelliptic curve does not carry the group structure of 

its Jacobian, the best one can do is to show that an isogeny induces a homomorphism 

of the Jacobians via the projection 7r. We also study isogenies of a superelliptic curve 
to itself and show that a nonsplit curve admits only trivial endomorphisms. Section 

6 contains an application of these results to the new super KP system discovered by 

Mulase and the author [ 10,11 ]. This system of nonlinear PDEs for the coefficients of 
a pseudosuperdifferential operator describes, via the Krichever construction, the defor- 
mation of a line bundle Z; over an algebraic supercurve by certain commuting flows in 
the Jacobian. The pseudodifferential operator is closely related to a special section of 
L; called the Baker-Akhiezer function. The algebraic supercurves involved are generally 
not super Riemann surfaces except in the special case of genus one. In this exceptional 

case we can construct explicit solutions to the super KP system describing flows in 
the Jacobian of a superelliptic curve, in terms of Weierstrass elliptic functions. The 

result can be presented as an isomorphism between a ring of meromorphic functions on 

the superelliptic curve and a ring of supercommuting differential operators [ 10,14]. It 

generalizes the classical result that the operators 

d 2 
Q = d x  2 2go(x + a) ,  (2) 

t33/2 d 3 d 3 
P = ~ +  - d x  3 3 p ( x + a ) ~ x  x - ~fJ ( x + a )  (3) 

arising from an elliptic curve generate a commutative ring. The parameter a should be 

viewed as a coordinate on the Jacobian and varies linearly with the flow parameters. A 

new feature of the super case is that the supercommutativity of the ring depends upon 
the fact that the theta function satisfies the heat equation. Section 7 contains conclusions 
and directions for further research. An Appendix briefly considers the problem of finding 

rational points on superelliptic curves. Here the nilpotent elements of A linearize the 

problem to locating rational points on the (co)tangent line to an elliptic curve at a 
rational point. Throughout this paper, computations which employ standard methods 
are nevertheless given in considerable detail, so as to remove any mystery from the 
supermodulus 8 and display clearly the role it plays in modifying the classical results. 

Before proceeding, let us return to the precise definition of the superelliptic curves we 
study. We fix a finite-dimensional complex Grassmann (exterior) algebra A in which 8 is 
an odd element and 7- an even one with Im 7"rd > 0. (Throughout this paper the subscript 
"rd" on a Grassmann variable, supermanifold, supergroup, etc. denotes the reduction of 

this object by modding out the ideal of nilpotents in A or in the structure sheaf.) We 
adopt the standard sheaf-theoretic treatment of supermanifolds [ 15] within which we 
are really dealing with families of superelliptic curves over the parameter superspace 
/3 = (pt, A). Our covering space, informally denoted C 1"1, is really the trivial family 

C l'l x /3, meaning the complex plane C equipped with the structure sheaf Oc ® A[O] ,  

where A[O] is the larger Grassmann algebra whose generators are 0 and the generators 
of A. The family of superelliptic curves M over /3 is the quotient of this family by the 
group G, meaning the following. The reduced space of M is the standard torus Mrd with 
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modular parameter ~'rd. The structure sheaf of M assigns to any open set U of Mrd the 
following ring Ou. U is covered by a collection of connected open sets Ui of C. To 

each element g in G there corresponds a transformation grd in the reduced group Grd 
generated by 

Trd : Z ~ Z "4- 1, Srd : Z ~ Z -~-7"rd, (4) 

which maps each U/to  some (possibly the same) Uj. For Ou we take all collections of 

functions { Fi ( z, 0) C (gu, } which are G-invariant in the sense that Fj ( z, O) = g Fi( z, 0) 
whenever Uj = grdUi, g C G. Here g acts on functions via Taylor expansion in nilpotents 

as usual: F( z + r + 0 6 , a + & )  means F( z + ~',0) + aSc~zF( z + r,O) + t~9oF( z +7-,0). 
If  ~- has a nilpotent part then the last expression is defined by further Taylor expansion 
in this niipotent part. The statement that p : M --~ B is a family means that there is a 

pullback map of the functions A on B to functions on M; the elements of A play the 

role of global constant functions on M and as such all the cohomology groups of M are 
modules over A (or its even part if the sheaf is purely even or odd). 

For those readers less comfortable with sheaf-theoretic language, which often includes 
the author, we can consider the set of A-valued points of M rather than M itself. This 

is the set of (even) maps /3 ~ M & /3 for which the composed map B ~ B is the 
identity. For each point of M this is an evaluation of functions at that point by assigning 

even and odd values from A to the coordinates z and 0 respectively. That is, it is 

just an abstract description of the A-supermanifolds of [8], or the supermanifolds of 

DeWitt [ 16] or Rogers [ 17], which are genuine sets of points with Grassmann-valued 
coordinates. The Picard and Jacobian groups as defined here naturally appear as such 

sets of A-valued points and will be discussed as such; our constructions can be translated 

into pure sheaf-theoretic terms by those readers with the sophistication to prefer this 
viewpoint. 

The choice of Grassmann algebra will usually be left open, but two cases are worth 
distinguishing. One is the case in which t~ is one of the generators of A. The most 
important example is the two-dimensional algebra having t~ as its only generator (plus 
unity) ; if we let ~- run through the upper half-plane this gives the universal Teichmiiller 

family of supertori (apart from the identification of ±t~). The other is the general case in 
which ~ is an element of A but not necessarily a generator. Such a family is a pullback 
of the universal family by a map of the base spaces, which indeed pulls back S to some 

element of A, e.g. 8 =/31/~2/~3 in terms of generators /~i. The most important distinction 
between these cases is that when t~ is a generator it annihilates only multiples of itself, 
while in general it may annihilate other elements as well, e.g. multiples of/~1 in the 
above example. 

2. Basic function theory 

In order to construct explicit functions and sections of bundles on the supertorus M, 
in particular the Baker-Akhiezer function appearing in super KP theory, we need the 
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building blocks corresponding to the Weierstrass elliptic function p(Z;T)  and the theta 

function O(z;7") (the capital letter is used for theta functions in this paper to avoid 

confusion with the coordinate 0) introduced in [4]. 

The super Weierstrass function is 

R(z,O;7",6) = ~(z;7" + 06) = ~(z ;T)  + 0 6 ~ ( z ; r ) ,  (5) 

where by convention a dot denotes 0, while a prime will mean Oz. It is superelliptic, as 
are its supercovariant derivatives DnR, where D = 00 +Oaz commutes with the generators 

of G and satisfies D 2 = Oz. These functions provide the standard embedding of M in 

projective superspace which we will recall in Section 4. 

Similarly, our super theta function will be 

H(z ,O;  7",6) = O(z ;  7" + 06).  (6) 

1/2 ] (Z; T), which The ordinary theta function appearing here is the one often denoted 8 [  1/2 j 

corresponds to the odd spin structure. It has a simple zero at z = 0 and the other lattice 

points, and satisfies 

O(z  + 1;7") = - O ( z ; 7 " )  = O ( - z ; r ) ,  

O( z ÷ 7"; 7") = --e--Zrir--2~riZO( z; ~'). (7) 

As a result, the super theta function satisfies 

H ( z  + 1,0) = - H ( z , O )  = H ( - z , O ) ,  

H(  z ÷ 7" ÷ 06, 0 ÷ 6) = -e-~m'-~ri°'~-~Triz H(Z,  0) ,  (8) 

where the moduli dependence of H has been suppressed. The relation between O and 

is [ 18] 

d 2 O m (0; r )  
dz z logO(z;7-) =- fa (Z;7- )  + q ,  q =  3Ot(0;~" ). (9) 

The first derivative Oz l o g o  is nearly elliptic, being invariant under z ~ z + 1 and 
changing by an additive constant under z ~ z + 7-. Since this is also the behavior of 0 
according to (1),  we can form the superelliptic combination [ 19] 

6 d 
cr( z, O; 7", 6) = 0 +  ~--~--zz logO(z;  7-), (10) 

which reduces to 0 in the split case where 6 = 0. This function will be of particular 
importance in view of the fact that it is holomorphic in the split case (when cohomology 

is freely generated) but only meromorphic otherwise. 
To describe the meromorphic functions on M and construct them from the building 

blocks above, we turn to the study of divisor theory. In the usual Cartier divisor theory, 
a divisor would be a subvariety of codimension (1 ,0) ,  hence dimension (0, 1 ), given 
locally by an even equation F(  z, 0) = 0. The fact that such divisors are not points breaks 
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the strong analogy between elliptic and superelliptic curves. It was the great insight of 
Rosly, Schwarz, and Voronov [ 8 ] (see also [ 20] ) to make use of the covariant derivative 

D (the superconformal structure) which exists locally on any super Riemann surface to 
define divisors of codimension ( 1, 1 ) - -po in t s - -v ia  the simultaneous solutions of 

F ( z , O )  = 0 ,  D F ( z , O )  =0.  (11) 

For any even function F for which the reduced function Frd(z) is not identically zero, 
a point (A-valued!) (z0, 00) satisfying these equations is called a principal zero of F. 

If  we write F ( z ,  O) = f ( z  ) + Odp(z ) and assume that (Z0)rd is a simple zero of frd (in 
this case we are discussing a principal simple zero of F) ,  this amounts to the statements 

f ( z o )  = O, Oo = - d p ( z o ) / f ' ( z o ) .  (12) 

A principal pole of F is a principal zero of 1/F. A formal sum of points ~ niPi is a 
divisor of F provided that in a chart containing P /=  (zi, Oi) we can write 

F ( z ,  O) = E(Z, O) H ( Z  - zi --  OOi) n', (13) 
i 

where the product is over the Pi contained in the chart and E is holomorphic with 

Erd ~ 0 in this chart [it may not be possible to separate all the points P~ because the 

corresponding reduced points (Zi)rd may coincide]. A subtlety is that a single function 
may have more than one divisor if its zeros and poles are not simple. For example, on 

C l'l, F = (z + a) e = z ( z  + 2a) with nilpotent even constant a satisfying a 2 = 0 has 

the two distinct divisors of zeros 2 ( - a , 0 )  and (0 ,0)  + ( - 2 a , 0 )  as well as others. On 
the supertorus, R(z ,  0) has a principal double pole at (0, 0) and two simple zeros. The 
super theta function H ( z ,  0),  actually a section of a bundle rather than a function, has 
a principal simple zero at (0 ,0) .  

We now derive the necessary and sufficient condition for a divisor ~ niP / to be a 
divisor of some meromorphic function F on M: the sum of the Pi with multiplicity must 
differ from a lattice point by ( a & 0 )  for some constant ~, namely 

Z r t i O i = n t ~ ,  Zrlizi=m-l-nT"-}--ott~, (14) 
i i 

for integers m, n. Of course, the total degree ~-~i ni must also vanish because it vanishes 
for the divisor of the reduced function on the torus Mrs. 

The proof of the necessity follows the classical and elementary proof for elliptic 
curves [ 1 ] by integrating D F / F  = D log F around a period parallelogram as shown in 
Fig. 1, chosen to avoid the points of the divisor. An easy computation shows that near 
a principal pole or zero where F behaves as (z  - zi - OOi) "i, we have 

D F  n i ( O  - -  Oi) n i ( O  --  Oi) 
- -  ~ - , ( 1 5 )  

F z - zi - OOi z - zi 

plus holomorphic terms. Then we evaluate the following two contour integrals (for 
details on the definition of super contour integration, see [21-23];  for closed contours 
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Sp 4y 3 STp 

Fig. 1. The period parallelogram, an integration contour for the proof of sum rules for the divisor of a 
superelliptic function. Except for orientation, sides 1 and 3 are related by the supertranslation S, sides 2 and 
4 b y T .  

DFd = --Uz 

and similarly 

it is simply Berezin integration over 0 followed by ordinary contour integration; for an 
open contour lying in a simply connected region in which F is holomorphic, it is the 

change in an antiderivative ~/,, with D@ = F, between the endpoints): 

~ / -niOOi dz dO= 27"ri Z niOi, (16) 
• Z - -  Z i  i 

= 2~ri ~ niz i. ( 1 7 )  

i 

Next we evaluate the integrals over each side of the parallelogram and use the fact 

that F is the same on opposite sides by superellipticity. For the first integral we note that 
0 is the same on sides 2 and 4, which have opposite orientations, so those contributions 
cancel, while sides 1 and 3 are related by 0 ---, 0 + 6. The Jacobian factors relating these 
integrals are unity, which is also clear from the antiderivative definition and the fact that 
D commutes with the generators of G. Hence these contributions sum to 

DF J O--Fdz= /-6-D~-dz = -r  f DlogFdz = 27rin& (18) 

1 1 

the point being that only the reduced part of log F is multivalued, the nilpotent part 
involving derivatives of log via the Taylor expansion. Comparing with the previous 
evaluation of the integral gives the sum rule for Oi. For the z integral things are slightly 

more complicated. Sides 1 and 3 are related by z ~ z + r + 06, sides 2 and 4 by 
z ---, z + I. Making these substitutions gives 

1 2 

=27ri(m+nT") +rfo-D-~-dz, (19) 

1 

where the last integral can have any odd value. Calling it -21ria, we obtain the sum 

rule for zi. 
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To show the sufficiency, we construct a function having any given divisor satisfying 
the sum rules in terms of the super theta function. First we note the effect of a super- 

translation on the divisor of a function: if F ( z ,  8) has the behavior ( z  - zi - 8 8 i ) "  

corresponding to a principal zero or pole at (zi, 8i) ,  then 

F ( z  - a - O e ,  O - e )  ~ [z  - ( z i + a + O i E )  - O ( O i + e ) ]  n', (20) 

shifting the zero or pole to ( zi -4- a + 8ie,  0 i -~ e ) .  The  odd coordinates of the divisor are 

shifted uniformly by e, the even coordinates uniformly by a but also nonuniformly by a 

term proportional to the odd coordinates. This changes the sum of the zi by a multiple 
of the sum of the Oi, which is a multiple of 8, consistent with the sum rule for zi. In 
particular, the theta function H ( z  - zi - 08i, 0 - 8i) is holomorphic with a principal 

simple zero at (zi, Oi). 

Unfortunately, this theta function is not convenient for our purposes since it does not 
transform by a mere phase under the group G. As a consequence of the commutation 

relations of  supertranslations, the generator S sends it to a phase times H ( z  - zi - OOi - 

280i,  0 - tgi). However, the function H (  z - zi - OOi, 8 + Oi) also has a principal simple 

zero at (zi, Oi) and transforms as 

S H (  z - zi - Ot~i, O -~- {9i) 

= _e-~ri[r+(o+e,)~+2(z-z,-OOi)l H ( Z  - zi - 08i, 0 + Oi). ( 21  ) 

This remedy of changing the relative sign in 8 - 8i amounts to the usual replacement 
of a SUSY generator by a SUSY covariant derivative. 

Let us suppose first that ~ , i  niPi is a degree-zero divisor for which the Pi sum exactly 
to a lattice point, with no remainder ceS. By adding the fictitious points (0, 0) - (m + 

m-, nS) we can assume that the Pi sum to zero without changing the divisor on M. Then 
a superelliptic function with this divisor is 

F ( z ,  0)  = 1 - I [ H ( z  - zi - OOi, 0 .-1- Oi) ]n,. (22) 
i 

Its invariance under the generators of the group G is easily checked using the relation 
(21) and the sum rules (14). 

The simplest example of a degree-zero divisor satisfying the sum rules with a non- 
trivial remainder a8  is A = (a&, 0) -- (0, 0). A meromorphic function with this divisor 
is easily constructed from the function o- introduced in Eq. (10), namely 

F~(Z ,O)  = 1 -  2~riceo'(z,O) = ( 1 -  ETriot8) ( 1 - a S - ~ z  l o g O ( z ; r ) )  , (23) 

where the second form shows the behavior I - c t 8 / z  near z = 0 dictated by the 
divisor. Now, given an arbitrary divisor satisfying the sum rules, subtracting the divisor 
A produces one which sums exactly to a lattice point. Hence a function with the original 
divisor is Fa times a product of super theta functions as in Eq. (22). This completes 
the construction. 
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3. The Picard and Jacobian groups 
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In this section we compute explicitly the Picard, Jacobian, and divisor class groups of 

the super elliptic curve M. These objects were defined and discussed in [8], where they 

were all shown to be isomorphic in the normal case. Some but not all of the arguments 

used there apply more generally; nevertheless the isomorphisms will be verified here 
by direct calculation. We also exhibit the Abel map from M to its Jacobian, which is a 

projection rather than an isomorphism as for classical elliptic curves. 

We consider the set of line bundles over the superelliptic curve M. A line bundle 

is specified by transition functions which are elements of (.gev [5,8,24], the invertible, 

even functions, on overlaps of charts. That is, the Picard group of line bundles under 

tensor product is Pic(M) = H 1 (M, O~v) as usual. The standard exponential exact sheaf 
sequence, 

o ~ z ~ Oev ~ Oe* --'  1, ( 2 4 )  

and the resulting cohomology sequence, 

H l (M, Z) --, H 1 (M, Oev) ~ H1(M, O2v) ~ H2(M, Z), (25) 

imply as usual that the group of line bundles of degree zero is 

Pic°(M) = H i (M, Oev)/H 1 (M, Z). (26) 

We can also describe a line bundle by the set of divisors of all its meromorphic 

sections. Since the ratio of two sections is a function, this gives an isomorphism between 

Pic°(M) and CI°(M), the group of classes of degree-zero divisors modulo divisors of 

meromorphic functions [5,8]. We will compute both groups explicitly, verifying this 

isomorphism and obtaining the projection map 7r: M ~ Pic°(M). 

The divisor class group can be computed immediately from the results of the previous 

section. We first observe that every divisor A of degree zero is equivalent to one of the 

form P - P0 with P0 a fixed basepoint on M, for example (0, 0). This is because P 

can always be chosen so that A -- p + P0 satisfies the sum rules (14) and is therefore 
the divisor of a function. What changes from the classical elliptic curve results is that 

the choice of P is not unique: evidently we are free to add multiples of 8 to the even 

coordinate of P without changing the equivalence class of the divisor P - P0. This 

establishes the central result of this section: the Abel map 7r : M ---, CI°(M) which 
sends a point P to the divisor class [P - P0] is a projection onto CI°(M) ~ M~ =, 
where the identification is (z, O) =- (z + a6, 0). In the split case 6 = 0 we recover the 

naive isomorphism of M with CI°(M) which might have been expected. 
Before we confirm this result by direct computation of the Picard group, let us pause 

to explain in the context of the group structure why M cannot be isomorphic to its 

Picard group in general. The set of line bundles obviously carries the Abelian group 
structure given by tensor product. However, M carries no such group structure. Recall 
that M is the quotient of C I'l by the discrete group G. Now, C I'l itself can be identified 

with the nonabelian supertranslation group, 
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(Z, O) • (w, X) = (Z + w + 0 X, 0 + X).  (27) 

G is the discrete subgroup generated by (1 ,0)  and (r,  iS) acting by right multiplication. 

In view of the fact that [25] 

(z, 0) • (r ,  t~) • (z,O) -1 = ( r  + 206, t~), (28) 

G is not a normal subgroup [ 15] and the quotient M does not inherit the group structure. 
However, C 1'1 also admits an Abelian group structure via 

(z,O) + ( w , x )  = (z + w,O + X).  (29) 

Of course, M does not inherit this group structure either, because G is not a subgroup at 
all. But let us take the quotient c l ' l / - - .  On this quotient space G does act as a subgroup 

of the Abelian group structure, hence a normal subgroup, and the further quotient by G 
is the Picard group of M. [A subtlety arises here: = mods out by all tr6 with a in the 
Grassmann algebra A. This does not seem to include modding out by 0t~ as required to 
identify G as a subgroup. One must remember that the group laws are viewed as defined 
on the set of A-valued points to resolve the apparent paradox.] The moral is that the 

unexpected identification = really provides the minimal modification of M which will 

admit an Abelian group structure as Pic°(M) must. 
We now turn to the direct computation of Pic°(M) from (26). It seems cleanest to 

compute H 1 (M, Oev) as the group cohomology H 1 (G, Oev) with values in the functions 

on C l'l, following similar calculations of Hodgkin [6,26]. For an explanation of the 

equivalence between the sheaf cohomology of M and the group cohomology of G, see 

[27]; the techniques of group cohomology we use are fairly intuitive and can be found 
in [2, Appendix B]. In particular, there is the exact sequence 

0 ~ Hl[(S),OTev] ~ Hl(G,  Oev) ~ Hl[ (T) ,Oev] ,  (30) 

where (T) ,  (S) are the cyclic subgroups generated by the two generators of G, and OTv 
are the T-invariant functions. The last cohomology group in this sequence is trivial, so 

we get the isomorphism 

Hl(G,  Oev) '~ Hl[(s),Orev], (31) 

which we use for our computation. In geometric language this says that a torus is made 
from the plane by first making the cylinder with fundamental group (T),  whose sheaf 
cohomology is trivial because it is noncompact. The cohomology of the torus is then 
computed directly from functions OTv on the cylinder by identifying its ends with S. 

A cocycle for HI[ ( s ) , o r~]  is determined by assigning to the generator S a T- 
invariant function F = f ( z )  + 0~b(z); it is trivial (exact) if F = f - SF for some 
T-invariant function f = g( z ) + Oy( z ). This requires 

f ( z ) + O d p ( z )  = g ( z ) + 0 T ( z ) - g ( z + r + 0 6 ) - ( 0 + 6 ) T ( z + r + 0 6 ) ,  (32) 

which amounts to 
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f ( z )  = g ( z )  - g(z + ~) - 8y(z + T), 

~ ( z )  = e ( Z )  - r (Z  + r )  - S g ' ( z  + r ) .  (33) 

Because every function appearing here is T-invariant, which is to say periodic, they have 
Fourier series expansions of  the form, 

f ( z ) ~ r 2 7 r i n z  = f n e  , 
7 1 = - - 0 0  

(34) 

and similarly for the other functions. Then the triviality of  the cocycle becomes the 
conditions on the Fourier coefficients, 

fn  = g , (  1 - e 2 7 t i n t )  - 8Tn e2rrinr, 

flPn = Tn ( 1 -- e 27tint) -- 27rinSgne 2~rinr. (35) 

Given f ,  and ~b~, these equations can always be solved for gn and Yn, except in the case 
n = 0 when the conditions for triviality are 

3"0 = -Syo,  ~o = O. (36) 

That is, the nontrivial cocycles are precisely the odd constants and the even constants 

modulo multiples of  8: H1(M,  Oev) = C l a /= - ,  in agreement with Proposition 3 of  [6].  
To complete the calculation, we must compute H 1 (G, Z) .  Of  course this is a lattice 

Z ® Z, but we need to know where this lattice sits inside H 1 (G, Oev). An element of  
H 1 (G,  Z)  assigns integers - n ,  m to the generators T, S respectively. In the calculation 
above, however, we used the triviality of  H t [ ( T ) , O e v ]  to represent each class in 
H 1 (G,  Oev) by a cocycle which assigned zero to the generator T. To find such a 

representative of  our element of  H 1 (G,  Z) ,  we pick a function g ( z )  such that - n  = 

g( z ) - g( z + 1 ), for example g(z  ) = nz,  and subtract the trivial cocycle which assigns 

T~---~g(z) - g ( z  + 1) = - n ,  

S~---,g(z) - g ( z  + • + 08) = - n T  - nO8, 

obtaining the new representative 

(37) 

T~--~0, S~- - ,m + nT + nO6. (38) 

In terms of  our identification H 1 (M, Oev) = C l'l / = ,  the elements of  H 1 (M, Z) are thus 

precisely the lattice points m ( 1 , 0 )  + n( r ,  6) in C la. This explicitly shows that 

P i c ° (M)  = H I ( M ,  O e v ) / H I ( M , Z )  = M~ = = CI° (M) .  (39) 

Next we wish to similarly calculate the Jacobian of  M, defined [8] as the set of  odd 
(A-)l inear  functionals on the holomorphic differentials of  weight 1/2, modulo those 
functionals which are the periods of  the differentials around cycles. A 1/2-differential 
on a super Riemann surface is a section of  the canonical bundle, the bundle whose 
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transition functions are the Berezinian determinants of  those of  M. Since supertransla- 

tions ( I )  have unit determinant, this bundle is trivial for superelliptic curves, and the 

1/2-differentials can be identified with functions. The periods of  such a function are 

obtained by integrating it over all homology cycles. Equivalently, we can lift a function 

F to the covering space C 1'1 and find an antiderivative • with F = Dq~; the periods 

are the changes in • under the covering transformations generated by T and S. The 
Jacobian is then the set of  odd linear functionals on H ° ( M , O )  = {a + 0a  : a 6  = 0} 

modulo periods. Note that we consider all global functions, not merely even ones, so as 

to obtain a A-module rather than a Aev-module. 

The periods of  the function a + 0a  are easily found. An antiderivative is • = ~z + 8a. 

Under the translation T this changes by a,  while under the other generator S it changes 

by ~7-+ 6a. The odd linear functionals which send a + 0a  to integral linear combinations 

of  these two constants will be equivalent to zero in the Jacobian. 

To understand the structure of  the linear functionals on the functions a ÷ Oa let us 

begin with the simpler case in which 6 is one of  the generators of  the Grassmann 

algebra A. Then the set of  ot which annihilate 6 is just the set of  multiples of  6, and a 

function a + Oa is a linear combination of  the functions 1 and 06. Then an odd linear 

functional is determined by sending 1 to some odd constant r/, and sending 08 to some 

odd constant K. By linearity, 6K = 0, so x = 6k for an even constant k defined modulo 

8. Hence we have found that the odd linear functionals correspond precisely to points 

(k , r / )  in C1'1//~. They can be viewed as mapping 1 H r/ and 0 H k, just as if 1 

and 0 formed a basis for the functions, except that k is only defined modulo 6. Since 

the periods are just the familiar lattice points generated by ( l, 0) and (7", 8), we have 

explicit agreement between the Jacobian and the Picard group computed earlier. One 

can easily verify that the isomorphism between them is the one described in [8] :  given 

a line bundle in Pic °, represent it by a divisor in the form P - P0 = (k,r / )  - (0 ,0 )  and 

associate to it the linear functional which integrates a function from P0 to P, which will 

also be (k, r}) with our conventions. 

What changes in the general case in which 6 is not a generator of  A? A linear 

functional is still determined by its effect on the functions of  the forms a and 0c~ 

separately. A functional on {a} is still determined by the odd constant r/ which is the 

image of  1, but the functionals on {Oa} are not so clear. We are asking for the A-linear 

functionals on the ideal I = ( a  : a 6  = 0}, the annihilator of  8. Because A is an example 

of  a quasi-Frobenius, or self-injective ring [28],  any such functional is multiplication 
by an even constant k [29] which is determined up to constants annihilating I. Again 

because A is self-injective, these are the multiples of  6 [ 30]. Hence the isomorphism of  
the Picard and Jacobian groups holds in general. To see that A is indeed self-injective 
one can apply a simple test from [30] : the annihilator of  the annihilator of  any minimal 

ideal of  A must be the ideal itself. The unique minimal ideal in the Grassmann algebra 

with generators ill ,  f12 . . . . .  fin is the set of  multiples of  f l l f l 2 " "  fiN; its annihilator is 
the ideal of  all nilpotents, whose annihilator is indeed the minimal ideal again. 
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4. The g roup  law in a projective embedding 

265 

As shown in [4] ,  the superelliptic curve M can be embedded in the projective 
superspace p3,2 with the help of  the super Weierstrass function R ( z , a ) .  Indeed, the 

map 

(z ,0 )  H ( R , R ' , R " ,  1; D R ,  D3R)  = ( x ,  y , u , v ;  dp, g' ) (40) 

in the affine chart v = 1, with the extension to the points at infinity, 

( 0 ,0 )  H (0 ,0 ,  1 , 0 ; 0 , 0 ) ,  (41) 

embeds M as the locus of  points satisfying the following homogeneous polynomial 

equations: 

y2v - 4x 3 + g2xv 2 + g3 v3 -- 2fbg'v = O, 

2yg'v + (g2v 2 - 12x2)~b + (~g2xu 2 @ ~g3 U3 = 0, 

2yuv  + (g2v 2 - 12x2)y - 6g24)v 2 = O, 

2(g2v 2 - 12x2)uv  + (g2v 2 - 12x2) 2 + 26g2g'v 3 = 0, (42) 

where g 2 ( r )  and g3(7) are the usual modular functions. The last equation is redundant 

except when y = 0; M is not a complete intersection. 

Now although M is a variety, it does not carry a group structure; its Jacobian, which 

does carry a group structure, is not a variety. [Sketch of  proof: the functions on the 

Jacobian are the functions on M which are invariant under the identification z -= z + a& 

This does not include the super Weierstrass function R or its derivatives, but does include 

aR,  a D R ,  6R'  . . . . .  However, none of  these functions can be expressed as a polynomial 

(which would necessarily be a linear combination because 32 = 0) in the others, so 

this "coordinate ring" is not finitely generated.] What then becomes of  the standard 

geometric implementation of  the group law by intersecting an elliptic curve with lines? 

We attempt to follow the usual construction by taking a meromorphic function F on 

M given by 

F = a R  + R' + ceDR + f l D 3 R  + b. (43) 

This is the restriction to M of  a linear function on p3,2 (in the chart v = l ) ,  

F = a x  + y + o ~  + fig, + be. (44) 

The conditions for F to have a principal zero at some point on M, F = D F  = 0, translate 

into the linear equations of  a plane, 

a x  + y + a49 + 13g' + bv = O, 

adp + g' - o~y - f lu = O, (45) 

to be solved simultaneously with the equations of  M. Note that this is hardly a generic 
plane, but rather a very special one encoding the notion of  a principal zero. It is given 
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by simple linear equations only because the embedding of M was constructed using the 
covariant derivative D which also encodes the superconformal structure. We can adjust 

the four parameters a, b, a ,  13 so that F has principal simple zeros at any two given 

points Pi = (zi ,  Oi), i = 1,2 on M. The naive expectation would be that F has a principal 
triple pole at (0, 0) and, as a consequence of our function theory, there is a third point 
of intersection with M at P3 such that P1 + P2 -t- P3 = 0 mod - .  This turns out to be 
wrong on two counts. First, using the fact that the singular part of R ( z ,  O) is 1/z  2, we 

find for the singular part of F 

F ~ az  -2  - 2z -3 - 2aOz -3 + 6/30z -4  

= ( a z  - 2 - 3a0/3 + 2 0 a ) ( z  - 0 /3)  - 3 ,  (46) 

so that the triple pole is actually located at (0, fl). This is a consequence of the fact that 
the most singular term in F is the nilpotent f l D 3 R  term. We could not have avoided this 
by including an equally singular even term R" in F, since then the condition D F  = 0 for 
a principal zero would involve DSR,  which is not one of the projective coordinates in 

our embedding. Next, there will indeed be a third point of intersection, another simple 
zero of F at P3, but there is also a fourth intersection at the location of the triple pole 
itself: (0, fl) embeds in p3,2 as (0,0,  1,0;0, fl), which is easily seen to satisfy the 

homogeneous Eqs. (45). Thus the group law is realized in the form 

PI + P2 + P3 - 3(0, fl) = 0 m o d  -=. (47) 

This is a translate of the standard group law, with the identity shifted to the point 

(0, 3fl) in the fiber of M at infinity. Note that the point which plays the role of the 
identity varies with the choice of points P1, P2 to be added, since fl depends on this 
choice, but it can always be located geometrically as the fourth intersection of the curve 
with the plane. The existence of this fourth intersection could have been expected from 
the fact that the reduction of this embedding of M is not the usual degree 3 embedding 
of an elliptic curve in p2, but the degree 4 embedding in p3 using p, p ' ,  and go", in 
which there is indeed an extra intersection at infinity [ 31 ]. 

5. Isogenies 

An isogeny of elliptic curves is a holomorphic map f from one to the other with the 
translation symmetry normalized out by requiring f ( 0 )  = 0. One proves that an isogeny 
is either constant or onto, and that it is always a homomorphism of the group structures. 
Since a super elliptic curve does not have a group structure, the super generalization 
will be that an isogeny F induces a group homomorphism via the projection maps to 
Pic°: 

Pic°(Ml)  ~r2~1 M1 v M2 -~ Pic°(M2). (48) 
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The homomorphism is independent of the inverse chosen for rrl. We will also discuss 

isogenies from a super elliptic curve to itself and show that only a split curve can admit 

nontrivial endomorphisms. This is due to a conflict between the linear nature of an 

isogeny and the quadratic constraint which is implicit in the superconformal structure 
of M. 

Given two superelliptic c u r v e s  M i = CI ' I /Gi  over A, with Gi generated by super- 
translations of the form (1) with parameters ri, 8i, an isogeny will be a holomorphic 
map F : MI --+ M2 with F(0, 0) = (0, 0). (We will eventually require the map to be 
surjective as well.) Its lift to the covering space C 1'1 takes the form, 

( z ,O)  ~--~F(z,0) = [ F ( z , O ) , ~ F ( z , O ) ]  = [ f ( z )  +Odp(z ) ,~b( z )  + O g ( z ) ] ,  (49) 

with f ( 0 )  = ~b(0) = 0. Note that an isogeny is not assumed to be superconformal, but 
merely holomorphic, even though the groups Gi act superconformally. 

In order that the map (49) descend to the quotient spaces Mi, it is necessary and 
sufficient that acting on ( z ,O)  with a generator of Gi must change F(z ,0 )  by the 
action of some element of G2, which must he independent of z by continuity and the 

discreteness of the group. Therefore, we have 

F ( z  + 1 ,0)  = F ( z ,  0) + k + lr2 + l ~ ( z ,  0)t$2, (50) 

~ ( z  + 1,0) = gt(z,O) + 162, (51) 

F ( z  + rl + 081,0 + 8 l )  = F ( z , O )  + m + n~2 + n ~ ( z , O ) 6 2 ,  (52) 

g ' ( z  + rl + 081,0 + ~l ) = g t ( z ,  O) + n62, (53) 

with integers k, l, m, n. If  we use (49) to write these conditions in terms of f ,  ~b, O, g, 

we obtain 

f ( z  + 1) - f ( z )  = k + Ir2 + l~b(z)82, (54) 

~b(z + 1) - ~b(z) = l g ( z )82 ,  (55) 

~b(z + 1) - O ( z )  =/82, (56) 

g(z + 1) - g ( z )  =0, (57) 

f ( z  + r l )  - f ( z )  = m + nr:  + nO(z )Sa  - ~$1gb(z + 71), (58) 

cp(z + r l )  - dp(z) = ng(z)t$2 - S j f ' ( z  + r l ) ,  (59) 

~ ( z  + r l )  - g ' ( z )  = nt$2 - 61g(z + r l ) ,  (60) 

g ( z  + r j )  - g ( z )  = -61~b'(z  + r l ) .  (61) 

The analysis of these equations is somewhat tedious, but straightforward. Eqs. (57) 
and (61) imply that 61g(z )  is an elliptic function, and entire, hence a constant. (A 
simple argument using the filtration of A shows that this is true even though rl may 
have a nilpotent part.) Given this, Eqs. (56) and (60) say that 0 ' ( z )  is elliptic, 
hence constant. Calling the constant 3/and using the normalization ~b(0) = 0, we have 

g ' (z )  = ~'z. According to (56), ~, = 162. From (60), 
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61g( z ) = n62 - y~q = ( n - I'rl)62, (62) 

so that 62 must be a multiple of  61 [and vice versa if we assume g ( z )  is invertible]. 

Consequently, multiplying any equation by 61 will kill terms containing either t~i, and 

terms involving ¢ ( z  ) t3i are already zero. 

With this information, Eqs. (55) and (59) say that 61c, b (z )  is elliptic, so constant. 

Then (54) and (58) say that f P ( z )  is elliptic, which together with the normalization 

f ( 0 )  = 0 gives f ( z )  = az where the constant a = k + l r 2 .  Eqs. (57) and (61) give that 

g ( z )  is elliptic; so g ( z )  = c, a constant, and (55) and (59) make ~bP(z) a constant, 

so ~b(z) = cez + f l  with a --- lc62 according to (55).  Having expressed all the unknown 

functions in terms of  a few constants, all eight equations are satisfied provided the 

constants satisfy a few relations. Eq. (58) requires 61 fl = m + m'2 - a r l ;  Eq. (59) gives 

61a = nc62 - O l T  1 = (n - hq )c62; and Eq. (60) implies 61c = n62 - yT"l = (n - / r l ) 6 2 .  

Collecting all these results, the general form of an isogeny is given by 

f ( z )  = a z ,  (b(z )  = a z  + f l ,  ¢ ( z )  = y z ,  

( z ,O)  ~ [az + O ( a z  + f l ) ,  y z  + 0 c ] ,  

where 

g ( z )  = c ;  

(63) 

a = k + I~'2, T = 162, ce = cT, 

t31a = ( n - h q ) c 3 2 ,  31c= (n - lr l)62,  6 1 f l = m + n T 2  -- ( k +  l'r2)'rl. (64) 

Having obtained this general form, we can use it to answer several questions about 

isogenies of  super elliptic curves. First let us ask whether an isogeny, which is only 

holomorphic by definition, is in fact a superconformal map. A map F(z ,  0) -- [ F ( z ,  0),  

~ ( z ,  0 ) ]  is superconformal provided that D F  -- ~ 'Dq ' ;  in our case this says that 

a z  + fl  + Oa = y c z  + 0C 2. (65) 

This requires a = yc,  which is one of  the conditions (64);  a = c 2, which need only hold 

modulo the annihilator of  61 according to (64);  and fl = 0, which is a completely new 

restriction. We conclude that not every isogeny is superconformal; the superconformal 
ones take the special form, 

( z ,O)  ~ (c2z + O y c z ,  y z  + O c ) .  (66) 

Next, we see that while isogenies of  ordinary elliptic curves are either constant or 
onto, this is not true for super elliptic curves. If  the parameter a is nilpotent, for example, 

a nonconstant isogeny may have a constant reduction, so that it is not surjective. This is 

simply because the presence of  nilpotents can lead to a wider range of  singularities for 
maps in general. We prefer not to consider such singularities, so we assume from now 
on that all our isogenies are surjective, which requires that the reduced parameters ard 
and Crd be nonzero. The important consequence of  this is that 61 is a multiple of  62 as 
well as vice versa. 
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We now prove that a surjective isogeny of super elliptic curves induces a well-defined 

homomorphism of  their Picard groups via the diagram (48) ,  

P ic0(Mj)  rr~' M1 _FF M2 _g3, Pic0(M2). (67) 

A point (z, 0) of  P ic° (Ml)  is the image under ~'l of  any point (z  + e6], O) of  Mj for 
any e. The isogeny F sends this point to 

(z + e61,O) ~ [az + ae6j + O(az  + fl) + Oae6 j , y z  + ye61 + Oc] (68) 

in M2. Then 77- 2 removes any multiple of  6 2 from the first coordinate. The result is 
indeed independent of  e, showing that the composite map is well-defined, because the 

surjectivity makes 61 a multiple of  62. This also eliminates the term ye61 from the 

second coordinate, because the conditions (64) include y = 162. 
Now, at the level of  the Picard groups, we can drop a ,  which is a multiple of  62, 

from (63) and write an isogeny as 

( z , 0 )  H ( a z  + Ofl, yZ + Oc). (69) 

But this is a linear map, and the group law is simply addition in these coordinates, so 

the map is a group homomorphism as claimed. 
Next we examine isogenies of  a super elliptic curve M onto itself (endomorphisms) .  

Setting rl = 7-2 = r, 61 = 62 = ~ in the general formulas, we obtain in this case 

with 

(z ,O) H [az +O(cez + f l ) , y z  + 0 c ] ,  (70) 

6c = 6(n  - l r ) ,  6a = 6c 2, (71) 

a = k + lr, 3/= 16, a = cl6, 6fl = m + nr - ( k  + lr)r .  (72) 

In the special case when M is split, 6 = 0, we lose the conditions (71) and obtain the 

simple form, 

(z ,O) ~-~ (az  +Ofl ,  Oc), (73) 

a = k + l ~ ' ,  O = m + n r - ( k + l r ) r .  (74) 

In particular, c is now arbitrary; there is no relation like a = c 2 in this case. 

We see that in the split case, multiplication by an integer k, (z, 0) ~ (kz,  kO), is an 
endomorphism, which was to be expected since M and its Picard group coincide in this 
case. But this is not true more generally, since this map violates the condition 6a = 6c 2, 

which is a vestige of  the superconformal action of the group G. In fact, for 6 ~ 0, this 
2 which gives the quadratic constraint, implies ard = Crd, 

2 2 _ l rrd ( 2 n +  l ) I r r d + ( n 2 - - k ) = O .  (75) 
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This must hold in addition to the usual quadratic constraint appearing in the theory of 
complex multiplication, which here arises from reducing the condition on 6fl  in (72), 

l'r2d + (k - n)7"rd --  m = 0. (76) 

When l v~ 0 we are indeed describing complex multiplication, meaning an endomor- 
phism with a complex. By eliminating the quadratic term between these equations, we 

conclude that Trd is rational, not complex, a contradiction which shows that a nonsplit 
M cannot admit complex multiplication. However, even in the case l = 0 when a is an 
integer, the constraints give k = n 2 in addition to the usual k = n and m = 0, so that M 

admits only the trivial endomorphisms k = n = 0, 1. 

6. Supercommuting differential operators from super elliptic curves 

The beautiful Krichever theory which produces solutions to the Kadomtsev-Petviash- 

viii (KP) hierarchy of nonlinear PDEs from geometric data consisting of a line bundle 
over an algebraic curve together with some coordinate choices is by now well-known 
[32,33]. The simplest explicit example uses a line bundle /2 of degree zero over an 

elliptic curve M to construct the commuting pair of ordinary differential operators, 

d 2 
Q =  ~ - 2go(x + a) ,  

,o3/2 d 3 d 3 , 
P = ~ +  - dx  3 3go( x + a)-~xx - ~go ( x + a ) ,  

(77) 

(78) 

where Q3+/2 is the differential operator part of Q3/2 computed in the larger algebra of 

formal pseudodifferential operators. The correspondence which associates Q and P to the 
meromorphic functions go(z ) and -go ' (z  ) / 2  on M respectively sets up an isomorphism 

between the commutative ring of differential operators generated by Q, P and the ring 

of meromorphic functions on M with poles only at z = 0, which is generated by go(z) 
and -go ' (z  ) /2 .  As £ varies through the Picard group Pic°(M),  the parameter a changes 
and the ring of operators is isospectrally deformed. In fact, there is an infinite set of 

linear coordinates t,, for Pic°(M) on which a depends linearly, with Q satisfying the 
KP equations, 

OQ/atn = [Q+/2, Q].  (79) 

The corresponding construction of solutions to the supersymmetric KP hierarchies was 
worked out recently [ 10,11,14]. One surprise was that the geometric data involve a line 
bundle over a specific type of algebraic supercurve, which cannot be a super Riemann 
surface except in the special case of genus one. Another was the fact that linear flow 
in the Picard group of a fixed supercurve is described by a new super KP hierarchy 
discovered by Mulase and myself, and not by either of the previously known hierarchies 
due to Manin-Radul or to Kac-van de Leur. It follows that explicit solutions to this new 
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super KP hierarchy can be constructed using the information about the Picard group of  

a super elliptic curve developed in the previous sections. In this section we exhibit and 

discuss these solutions. We change our notation slightly to conform to the conventions 

of  the literature on KP theory: the standard coordinates on the covering space C 1'1 of  

the supertorus M will now be denoted by ( w , ~ ) ,  so that (z ,O)  can be reserved lbr a 

different set of  local coordinates on M to be introduced below. 
We begin with an overview of  the construction to be carried out. In a small disk U 

around the point Po : (w,~b) = (0 ,0 )  we introduce new coordinates (z ,O)  such that 

z -2 and Oz -3 (other exponents would work as well) extend to global holomorphic 

functions on M -  Po. We fix a nontrivial line bundle /2 of  degree zero on M and 

note that it is holomorphically trivial on each of  the Stein patches U and M -- U, 

hence completely described by a transition function across the overlap, a small annular 

neighborhood of  aU, which we can take to be the circle I zl = 1. we  embed £ in 

a family of  bundles £ ( x , ( )  by multiplying its transition function by an extra factor 

exp(xz - l  + (0 ) .  Although these bundles have no holomorphic sections, they have one 

which has the form ( z - l +  holomorphic) near P0 (note that this is different from having 

a principal simple pole there); the expression of  this section in the coordinates (z, 0) in 

the chart M - U is the Baker-Akhiezer function B(Z, 0, x, s c) [although we will express 

it in terms of  the covering space coordinates (w, ~b) instead]. It is the basic object in the 

theory and we will construct it explicitly in terms of  super theta functions. We observe 

that successive derivatives of  B with respect to x and s c produce sections having poles 

of  higher orders at P0 and constitute a basis for the space of  meromorphic sections on 

M with poles only at P0. This allows us to set up an isomorphism between the ring of  

functions having poles only at P0 and a ring of  super differential operators as follows. 

Given such a meromorphic function F, FB is a section with poles at P0 only, so it must 

be a linear combination of  derivatives of  B. But this is to say that it arises from B by 

the action of  a certain differential operator OF, so we associate this operator to F. It 

can be computed for an explicit F by matching the singular and constant terms in the 

Laurent expansions of  FB and OFB about P0. We will exhibit a set of  generators for 

this ring analogous to Q, P above, and discuss how they flow under the deformations of  

12 described by the super KP equations. 
We start with the specification of  the new coordinates (z, 0). In order that z -2  extend 

to a holomorphic function away from P0, we choose 

z -2 = R(w, 4,) + ~c= ~(w;~- + 4,~) + ~c, (80) 

where c is a constant and R is the super Weierstrass function introduced earlier. Similarly, 

in order that Oz-3 extend holomorphically we use a function with behavior ~bw -3 near 

P0, setting 

-2tgz  -3 = D R ( w ,  d~) - 2y  = 6~b(w; ~-) + ~b~' ( w; 7") - 2y ,  (81 ) 

where y is another constant, and we recall that a dot means c~ while a prime denotes 

aw. Using the Laurent expansion of  p (w)  [18] we obtain the relation between the two 

sets of  coordinates, 
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z - I  = w -1 [1 + ½cw 2 + (4&og2 - "~8 c2 ÷ ~og249a)W 4 ÷ ' '  " 1 ,  (82) 

0 = 49 - c49w 2 + y w  3 + (½c 2 - ~g2)49w 4 - ( c y +  ~ogza)w 5 + . . . .  (83) 

Following the construction of the Baker function in the non-super theory [32], we 
express it as a ratio of super theta functions times a prefactor which is the exponential 
of a function with the behavior x z  - t  + ,~0 = x w  - l  + 1~49 + holomorphic terms. Such a 

prefactor is 

exp [ xOw log H(w,  49) + •49]. (84) 

It has the correct singular part because of 

Ow l ogH(w,  49) = w - l  + (q  + 49agt)w + . . . ,  (85) 

where q is still the ratio of theta constants introduced in (9).  It is invariant under the 
covering transformation T : w ~ w ÷ 1, 49 --+ 49, while under the other generator S it 
acquires a phase 

exp( -2 r r ix  + sea) = e x p - 2 r d ( x  - sea/2rri) .  (86) 

As our "pre-Baker function"/) we take the product of this with a ratio of theta functions 
transforming by the opposite phase, namely 

B = e x p [ x O w l o g H ( w ,  49) + s e 4 9 ] H ( w - a - 4 9 a - x + s e a / 2 r r i ,  4 9 + o O ,  (87) 
H ( w -  a - 49a,49 t o t )  

as is easily verified using (21). 

The parameters a and a describe the given line bundle/2: its divisor is (a, a )  - (0, 0). 

It has a section given by 1 outside the disk U, and z - l H ( w  - a - 49a,49 + oe) inside. 
Equivalently, its transition function across OU (inside to outside) is z / H ( w - a - 4 9 a ,  49+ 

a) .  Then the transition function of the deformed bundle £ ( x ,  ~)  is 

z exp(xz -1 + se0) (88) 

H (  w - a - 49a, 49 + oe) " 

Now /~ is to be viewed as a section of this bundle in the outside chart M - U; 
dividing by the transition function gives the same section in the inside chart U as 

a nonvanishing holomorphic function (the mismatch between the exponential factors) 
times z - 1 H ( w - a - 4 9 a - x + ~ a / 2 7 r i ,  49+a) ,  from which we see that the deformed bundle 
has divisor ( a  + x -  sea/2¢;i, a)  - (0, 0). (We assume that all constants and parameters 
are small enough that the supports of these divisors are inside U.) In particular, x shifts 
the even coordinate of Pic°(M) linearly and could be viewed as such a coordinate itself, 
but se does not  shift the odd coordinate a. In fact, in view of the identification ~_, se 
induces no flow on the Picard group at all but only changes the trivialization of the 
bundle. 

The pre-Baker function can be normalized so that, apart from the exponential prefactor, 
its Taylor series in powers of w and 49 begins with constant term unity. We will need 
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this series through the quadratic terms in order to match singular parts of Laurent series 
later: 

Bn = O( a; r + aS) 
O( a + x - ~t$/2qri; r + aa) 

= exp [ XOw log H ( w, ~b) + (~b ] { 1 + ¢baL' + ~b6L - wL' - ckaw (L" + L '2) 

-cbaw(L' + L'L) + ½w2(L" + L '2) + ½(baw2(L'" + 3L'L" + L '3) 

+½~baw2 (L '' + 2L'L' + L"L + LL '2) + . . . } / N ,  (89) 

where we have introduced the abbreviations 

L= L ( x , ( , r ,  6) = l o g O ( a +  x-sC6/2rri;r +a6) ,  L '=axL,  L=OrL, (90) 

and the normalization constant N is the series in braces with x and s ¢ set to zero. Although 
the series has constant term unity, leading to the behavior I /z  for this section near P0, 
we see that there are also terms proportional to ~b, leading to additional singularities 
like fb/z. To obtain the true Baker function, we must subtract these off. Because of the 
exponential prefactor, derivatives of Bn with respect to x or s¢ produce new sections 2 
containing additional factors z -1 and 4) respectively, so O~/~n has a fb/z singularity. 
Subtracting the appropriate multiple of this yields the true Baker function, 

B =B. + (aL' + 8L),9(B. 

Oe8 t ,t Lt2 ) 
= e l ' " l N  -1  1 - w L ' + e e g g w L " + a g a w L ' + ~ - ~ i w L L  + ½ w 2 ( L " +  

+ ½q~otw2(L '" q- 2L'L") + ½~bt$w2(L '' + 2L'L') 

-- ,+rrt~'8"w2(L'L'" + 2L"L'2) + ' "  "}" (91) 

It is now tedious but straightforward to work out the explicit correspondence between 
meromorphic functions F on M holomorphic away from P0 and differential operators 
OF in x, s c by matching the singular terms in the series for FB = OFB. For example, the 
operator corresponding to the super Weierstrass function R(w, cb), with a double pole 
at P0, has the form Q = d 2 q- o90 q-- u,  with 

o)=2 ° ~ P ' ( a + x ; r ) +  2~i ' 

u=2 - p +  ~-~/[p'axlogS- (p-  q ) 2 ]  , (92) 

where all the functions have the same arguments as ga'(a + x; r ) ,  all odd parameters 
having been explicitly expanded out, and d = ax, a = a~. It follows from the general 

2 It may not be clear that derivatives of  /~ are still sections of /~(x,~'). The point is that /~ is a global 
function on M - U for all x, ~:, so its derivatives are too. They must extend into U as meromorphic sections 
since no essential singularity has been introduced. 
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theory, and can be verified explicitly, that the function - R ' ( w ,  ~b)/2 having a triple pole 
03/2 must correspond to P = ~+ . For any such second-order operator Q, one finds 

03/2 = d 3 3 o~Od + 3 ud 3 t 3 t P = ~+ + + + gu.  ~w 0 (93) 

A set of generators for the ring of functions holomorphic off P0 must contain an odd 
function in addition to R, - R ' / 2 ;  this is conveniently taken to be tr(w, ~b) of Eq. (10), 

which corresponds to the simple first-order operator 

X = 0 + 2 7 r i  " (94) 

The supercommutativity of the generators Q, P, X of the isomorphic ring of operators 
can be verified explicitly. Although it is not manifest from the form of (92), both Q 

and P depend on x ,~  only through the combination x -  ( 6 /2~ i  [see (86),(87) for 
the origin of this], and this is precisely the statement that they commute with X. We 
also have X 2 = 0. The vanishing of [Q,P] leads to a pair of third-order differential 
equations for to, u, namely 

Wxxx + 3~OWx~ + 6WUx + 6uwx + 3WxW¢ = 0, (95) 

ux~x + 3WUx¢ + 3WxU~ + 6uux = 0. (96) 

One finds that, exactly as in the non-super case, the first equation is satisfied in virtue 
of the identity 

J "  = 12fJp' (97) 

satisfied by the Weierstrass function. However, the second equation requires, in addition 
to this identity, the relation 

g2 = 12(q z - 2~'iq) (98) 

between the modular function g2 and the theta constant q. I have found similar relations 

in the literature on elliptic functions, though not in just this form; however, it is a simple 
consequence of the fact that the theta function satisfies the heat equation [ 18], 

47ri~)(w; 7-) = O"(w; r) .  (99) 

As a consequence, its logarithm f = log O satisfies 

47rif = f "  + f,2. (100) 

From the relation (9) between O and p we get the Laurent expansion 

f '  = w -1 + q w -  ~g2w 3 + . . . ,  (101) 

and the desired relation (98) follows by using this in (100) and equating the coefficients 
of w 2 on both sides. This illustrates that the super KP system contains information about 
the modular dependence of the theta functions, through the coupling between 7- and 0 
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in the superelliptic functions, which does not appear in the solutions to ordinary KP 

(although changes in moduli do figure in the additional symmetries of the KP hierarchy). 

Finally, we describe the flows on the Picard group (further deformations of £ )  which 
lead to the super KP equations for Q. These depend on an infinite set of parameters 
tn which are (Grassmann) even or odd for even or odd n respectively. They multiply 
the transition function of £ ( x ,  ~) by an additional factor exp t znz-n  or exp t2n+lOz-n 

respectively. At this point the properties of the new coordinates (z, 0) become important. 
Because z-2  extends to a holomorphic function on M - U, all the flows t4, t8 . . . .  are 

trivial since they can be undone by a change of bundle trivialization on M - U. Because 

Oz-3 extends holomorphically, the same is true for tT, tll . . . . .  The parameter t2 can be 
identified with x, since they produce the same deformation. The first nontrivial even flow 
is by exp t6z -3 ,  and we need to understand the Baker function for the new bundle this 

produces. It should have an exponential prefactor having this singular behavior. For this 
purpose we employ the function -R~(w, ~b)/2 with singular part w -3 = z - 3 - c z - i + . . . .  

Thus we need only multiply our previous Baker function by exp- t6R~/2 and replace x 
by x ÷ ct6 to obtain the new one. The effect on the resulting differential operators is 

the replacement a --~ a ÷ ct6 showing explicitly the flow on the Jacobian where a is the 
even coordinate. The flow would be trivial if we had chosen c = 0; the motivation for 

introducing this constant is precisely to get a nontrivial t6 flow. 
Similarly, for the first nontrivial odd flow by exp t30Z -I a n  exponential prefactor with 

this behavior is 

exp t3On logH(w-~b~7 ,  fb +71) =expt3 \tp~--~w- ~ + O ( w ; r ) J  " (102) 

This function is invariant under the generator T, but acquires a phase 

exp - t3 ( ~i6 + 27"rich) ( 103 ) 

under S. To obtain a well-defined pre-Baker function we compensate this phase by 

shifting the parameter ce in the numerator factor 

H ( w  - a - qba - x + ( ~ / 2 r i ,  (b + a )  (104)  

in (87) by a --~ or- t3 ,  which is the flow on the Jacobian in this case. The next odd flow 

t sOz-e  is actually trivial because there is a global function with this behavior, namely 

- t s D ~ w  log H(w,  ~b) = t5 [Oz -2 ÷ O( IC 3 - q )  + ] .  (105) 

The mechanics of this triviality is rather interesting: if this function is used to form 
an exponential prefactor for the pre-Baker function, a shift of the parameter £ will be 
required due to the term proportional to 0. We know that ( only changes the trivialization 
of a bundle, and indeed the change in/~ resulting from this shift is subtracted off along 
with the fb /z  poles in forming B, so that the differential operators are unchanged. 

The higher flows can all be computed in the same manner. Because there are global 
functions with leading singularities z -n  and Oz-n for all n > 2, we can use them as 
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prefactors for the Baker function (that is, to change the bundle trivialization in M - U) 
until any flow is reduced to a linear combination of those for n = 1. (In other words, 
any deformation can be reduced to a linear combination of the single even and odd 

generators for Pic°.) Then its effect can be read off as a linear shift in the Jacobian 

coordinates a and a. It is not always true, however, that the even flows only shift a 

while the odd flows only shift a.  In general each flow can shift both in the nonsplit 
situation. The flow parametrized by tl0, for example, acts by 

a ~ a + ( ½g2 + -~c 2) tlo, a ---* a - ~g2¢Stlo, (106) 

showing how the supermodulus ~ permits a flow in both even and odd coordinates. 
The differential operator Q ÷ ~c corresponding to the function z-2,  with its parameters 

shifted in this manner, gives a solution to the new super KP hierarchy of [10,11]. 

Unfortunately, unlike the standard KP theory, this hierarchy has no simple formulation 
in terms of Q itself, but is written in the Sato form in terms of the wave pseudodifferential 

operator K which satisfies 

B ( z , O , x , ~ , t )  = K e x p  x z  -1 + ~ 0 +  (t2nZ-~ +tzn+lOz  - " )  , (107) 
n=l 

conjugates Q into a simple form, 

K d 2 K  - I  = Q + ~c, (108) 

and satisfies the super KP hierarchy 

OK~ 0t2,, = - ( Kd n K - 1 ) _ K, (109) 

aK/c3t2,., = - ( Kadn K - '  ) _ K. ( 11 O) 

I have not tried to obtain an explicit expression for K. 

7. Conclusions 

In this paper we have developed the theory of super elliptic curves with an emphasis 
on the role of the supermodulus t~ and the non-freely generated character of the coho- 
mology modules. We discussed the building blocks for superelliptic functions, the super 
Weierstrass and theta functions, and proved the necessary and sufficient conditions for a 
divisor to be the divisor of a superelliptic function. We computed the Picard, Jacobian, 
and divisor class groups of a superelliptic curve, explicitly verifying the isomorphisms 
between them, and found that the Abel map 7r : M ~ Pic°(M) was a projection in the 
nonsplit case. The agreement between the different methods of calculation--cohomology 
for the Picard group, duality of modules for the Jacobian, function theory for the divisor 
class group--is  very satisfying. We showed that the group law can be implemented in 
a projective embedding by intersecting M with planes chosen to encode the notion of 
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principal zero, modulo the kernel of 7r and an ambiguity in the group identity element. 

We determined the general form of an isogeny of superelliptic curves, proving that it 

always induces a homomorphism of their Picard groups, and that a nonsplit curve admits 

trivial endomorphisms only. Finally, we applied this machinery to the explicit calculation 
of the supercommutative rings of differential operators which constitute the solution to 

the new super KP hierarchy corresponding to flow in the Jacobian of a superelliptic 
curve. The Baker function was expressed in terms of super theta functions and used 

to work out the differential operators corresponding to simple superelliptic functions, 
generalizing the classical Q, P pair of ordinary KP theory. 

It would be natural to seek extensions of this theory in two directions: higher-genus 
super Riemann surfaces, and supercurves of genus one (and higher) which are not super 

Riemann surfaces. For super Riemann surfaces of higher genus the primary motivation 
is again to understand the consequences of the non-freely generated cohomology. One 

should again construct the Picard, Jacobian, and divisor class groups as explicitly as 
possible and check their isomorphism in the general nonsplit case. An Abel map from 

the surface to its Jacobian should be constructed and investigated. Function theory on 
the surface should be studied in terms of suitable super theta functions. A higher-genus 

analogue of the simple substitution 7- --~ 7- + 06 which converts ordinary theta functions 
to super ones should be found. An important question is, On what space are the super 

theta functions naturally defined? The expectation that they should be defined on the 
Jacobian and then pulled back to M via the Abel map is not borne out by the genus- 
one situation studied here. Next, the duality properties of modules which determine the 
structure of the Jacobian should be understandable on the basis of A being self-injective, 

and this should be used to develop Serre duality for cohomology groups as A-modules 
rather than as C-modules as in [34]. One should study the Krichever map from super 

Riemann surfaces with local coordinates to states in the operator formalism. 
The motivation for studying genus-one supercurves which are not super Riemann 

surfaces, or Abelian supergroups on two generators whose action on C 1'1 need not be 

superconformal, is to construct more general solutions to super KP hierarchies. (One 

should also find nontrivial endomorphisms of such curves with the relaxing of the 

superconformal constraint.) We know from [ 10] that the Manin-Radul and Kac-van de 
Leur super KP hierarchies describe simultaneous deformations of the supercurve M and 

the line bundle Z~ over it, specifically by changing the patching of the coordinate 0 along 
with that of the line bundle across ,gU. Even if M is initially a super Riemann surface, 
this property will not be preserved by the flow. Hence one needs to repeat enough of 
the analysis of this paper for general genus-one curves to construct the Baker functions 

for families of line bundles over such curves. One may learn something about where 
the locus of super Riemann surfaces sits inside the larger moduli space of genus-one 
curves by studying the corresponding super KP solutions, e.g., what is special about the 

rings of differential operators when M admits a superconformal structure? Without the 
covariant derivative D one will have to settle for Cartier divisors which are not sums 
of points. On the other hand one may be able to exploit the remarkable correspondence 
[35] between general supercurves and untwisted N = 2 super Riemann surfaces, and 
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the resulting involution in the moduli space under which N = 1 super Riemann surfaces 

are fixed points. Perhaps this involution plays a role in the super KP theory. 

Appendix A 

A natural question is whether anything of  number-theoretic interest results from seek- 

ing rational points on super elliptic curves. By analyzing a simple example we will see 

that this essentially amounts to finding rational points on the (co)tangent p lane--more 

generally, the j e t s - - o f  an ordinary elliptic curve at a rational point. This is disappointing, 

since rational points on planes are abundant and easy to find. However, as pointed out 

to me by J. Silverman, the question of  counting such points having heights less than 

some bound is o f  interest. 

When we consider super elliptic curves over Q, the generators of  the lattice cannot 

always be reduced to the form (1).  Instead we must consider the more general form, 

T : z --+ Z + Ogl + Ot~l, 0 - - ~ 0 + t ~ l ,  

S ' Z - - ~ Z + O 9 2 + O ~ 2 ,  0 - - + 0 + 3 2  , (A.1) 

with ~162 = 0. As in [4] ,  we find that the affine part o f  the super elliptic curve is 
embedded in C 2'2 by the map, 

(z ,O)  ~ ( R , R ' ; D R ,  D3R) = (x,y;~b,g,) ,  (A.2) 

where R(z ,  8) = ~ (z ; to l  + 061,w2 + 062), as the set of  solutions of  the polynomial 
equations, 

y2 _ 4x 3 + g2x + g3 - 2(b$ = O, 

2 

2y~O - ( 12x 2 - g2)dp + Z t~i(O°~ig2x + cg°Jig3) = 0. (A.3) 
i=1 

We fix A to be the Grassmann algebra on just two generators ill ,  f12, and consider 
the affine supertorus in C 2'2 given by the equations, 

y2 _ 4x 3 + gzx + g3 - 2(b~ = O, 

2y~p - ( 12x 2 -- gz)~b + afllX + bfl2 = 0, (A.4) 

where g2, g3, a, b are rational. Now A is a four-dimensional vector space, and using the 

basis {1, ill,  fiE, ~1~2} we can write 

X = Xrd + Xl2fllfl2, Y = Yrd + Yl2/~lB2, 

---- ~ l /~ l  ÷ ~2~2,  ¢ ---- ~//1/~1 ÷ /~t2/~ 2. (A .5)  

By a rational point we understand one whose components in this basis are rational. 
Inserting these expressions into the polynomial Eqs. (A.4),  we obtain 
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Yr 2 --  4Xr~ + g2Xrd q- g3 = 0,  

2yrd~/'~ --  ( 12X~ct --  g2)~bl  = - a x f d  -- b, 

2yrct~2 - ( 12x2d - g2 )  ~b2 = 0 ,  

2yrdY12 -- (12X2~ --  g 2 ) X l 2  = 2(~bl  ,tb2 - ~b2~q ).  

279 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

The first equation says that (Xrd,Yrd) m u s t  be a rational point on the reduced elliptic 

curve. The three remaining equations share a common structure which can be understood 

by recalling the invariant differential of the reduced curve, 

2yrddyrd -- (12xZd --  g2)dXrd = 0. ( A . 1 0 )  

This can be viewed as defining a linear map from rational values of dxrd to rational values 

of dyrd, or vice versa, at the chosen rational point of Mrd; the derivative map defined 
over the rationals. Similarly here we get a map from rational (~bl, ~b2, xl2), playing the 
role of dxrd, tO rational (~/,1,~b2,Y12) analogous to dyrd, which is a deformation of the 
derivative map and is computed by solving linear equations only. A Grassmann algebra 
with more generators will bring higher derivatives into play through later terms in the 
Taylor expansions of the Eqs. (A.4).  
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